Bayesian Prediction in Clipped GLG Random Field Using Slice Sampling
نویسندگان
چکیده
منابع مشابه
Approximate Slice Sampling for Bayesian Posterior Inference
In this paper, we advance the theory of large scale Bayesian posterior inference by introducing a new approximate slice sampler that uses only small mini-batches of data in every iteration. While this introduces a bias in the stationary distribution, the computational savings allow us to draw more samples in a given amount of time and reduce sampling variance. We empirically verify on three dif...
متن کاملApproximate Slice Sampling for Bayesian Posterior Inference
In this paper, we advance the theory of large scale Bayesian posterior inference by introducing a new approximate slice sampler that uses only small mini-batches of data in every iteration. While this introduces a bias in the stationary distribution, the computational savings allow us to draw more samples in a given amount of time and reduce sampling variance. We empirically verify on three dif...
متن کاملUnmanned aerial vehicle field sampling and antenna pattern reconstruction using Bayesian compressed sensing
Antenna 3D pattern measurement can be a tedious and time consuming task even for antennas with manageable sizes inside anechoic chambers. Performing onsite measurements by scanning the whole 4π [sr] solid angle around the antenna under test (AUT) is more complicated. In this paper, with the aim of minimum duration of flight, a test scenario using unmanned aerial vehicles (UAV) is proposed. A pr...
متن کاملSelective Sampling Using Random Field Modelling
Most existing inductive learning algorithms assume the availability of a training set of labeled examples. In many domains, however, labeling the examples is a costly process that requires either intensive computation or manual labor. In such cases, it may be beneecial for the learner to be active by intelligent selection of examples for labeling with the goal of reducing the labeling cost. In ...
متن کاملSlice Sampling
Markov chain sampling methods that automatically adapt to characteristics of the distribution being sampled can be constructed by exploiting the principle that one can sample from a distribution by sampling uniformly from the region under the plot of its density function. A Markov chain that converges to this uniform distribution can be constructed by alternating uniform sampling in the vertica...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Statistical Theory and Applications
سال: 2014
ISSN: 1538-7887
DOI: 10.2991/jsta.2014.13.2.5